
UNIVERSITY OF YORK

DEPARTMENT OF COMPUTER SCIENCE

Architecture
Cohort 2 - Group 16 (Skloch)

Group Members:
Charlotte MacDonald

Hollie Shackley
Luis Benito
Kaustav Das
Sam Hartley

Owen Gilmore



Architecture Design Process

Our team used Responsibility-Driven Design (RDD) as the method to create the initial design of our

system. It is specialised for object-oriented design which is how we have decided to implement the

product. The aim of RDD is to maximise abstraction, distribute behaviour and provide flexibility [1].

The first step was to consider the product brief, interview with the client and requirements for a

detailed description of the system. A designer story was developed to help us understand the key

parts of the design. By underlining nouns in the product brief the main candidate objects were found

based on the themes. With these we created CRC (Candidate, Responsibilities, Collaborators) cards,

each with a small description of the concept and stereotypes. Next, from grouping the CRC cards it

was clear some were unnecessary as they duplicated functionality so were removed. For instance,

the Cell card was unnecessary as the player can move freely throughout the map so it doesn’t need

to be split into squares. Also, the GamePauser is not required as this can be done in GameScreen.

Finally, individual responsibilities and collaborators were added to the cards. Collaborators are other

cards that will need to be interacted with in order to meet responsibilities. These initial CRC cards

with responsibilities and collaborators can be seen on the website

[https://samh366.github.io/crc_cards.html].

Creating CRC cards is merely an initial estimate of what classes will be required to fulfil the product

brief. When we were happy after looking through this a few times, we moved onto trying to map out

these CRC cards to UML diagrams. At the outset we started with sketches drawn by hand as this

allows for informal discussion where we don’t have to focus on syntax and just lay out ideas. Then we

moved to a tool called plantUML for formal UML diagrams from the sketches. A variety of diagrams

were made to show the structure and behaviour of the system including class, sequence and state

diagrams. Many iterations of each diagram were created throughout the project as new features and

improvements were made.

UML Diagrams

Tools used

To create the structural and behavioural diagrams needed to represent the system we used

plantUML. One reason we selected it was because it can be used across multiple different types of

platforms: in browser; embedded in a Google Document with the plantUML Gizmo extension and

with IntelliJ IDEA’s plugin by simply making a .puml file. As we are already using IntelliJ for the

implementation it’s an IDE the whole team should already have installed and is available on lab

computers. The code is very human-readable and the documentation is well developed with lots of

examples making it simple to learn and implement. One issue with PlantUML is that in the diagrams

the arrows can go in sub-optimal routes which can overcomplicate them. The text was also often

very small so to fix these issues we tried altering the arrow length and text size.

Structural Diagrams

Class diagram with packages for the whole system

When creating the initial class diagram [https://samh366.github.io/architecture.html] it was clear it

would be very cluttered as there are many classes so we broke it down into packages where possible.

The Screen package was for all screens used throughout the game (MenuScreen, GameScreen and

SettingsScreen). The Event package was for coordinating and managing all the in-game events

(EventManager, Activity and OptionDialogue). GameObject and Location are in the Environment

package as they are to be placed throughout the map. DateTime is a package for the date and time

as they are closely linked and rely on each other when it comes to incrementing the day.

HustleGame, Player, Map and Energy didn’t quite fit into packages so have been left alone.

https://samh366.github.io/crc_cards.html
https://samh366.github.io/architecture.html


For the next version [https://samh366.github.io/architecture.html], an interface called Screen was

added as all screens had attributes/methods in common but no Screen instance will ever need to be

created. This means all screen classes in this package will inherit from the Screen class. A

SettingsScreen was also added as we realised a separate screen would be best for this rather than

including it in the MenuScreen. The Screen package was changed to UserInterface so as not to

confuse with the new interface also called Screen. The map class was removed as in the game it

would be an asset rather than its own class. Relationships between classes/package classes were

changed so Environment and Event now relate to GameScreen instead of HustleGame. This is

because they are only needed and will be rendered/used on this screen.

Above is the final class diagram. A CreditScreen was added as this is now necessary, as well as setup

screens as methods in MenuScreen for the tutorial and avatar selection which shouldn’t need their

own class. A GameOver screen was also added which implements the Screen interface. This displays

final stats and has a button leading to the MenuScreen. Music and sound effects were not necessary

but we had time to implement them and thought they would be a nice addition so a SoundManager

class was created to control how sounds are used in the game. OptionDialogue was also renamed to

DialogueBox as it was deemed a clearer name.

https://samh366.github.io/architecture.html
https://www.plantuml.com/plantuml/img/XPJDRjim3CVlVWeXfsn0W_QmUxCbtGOiw01lGtjaRSRHgWz37rxI8i2UPW-s9vbaoRBSPiYD_9F-aI8bNsi3obZE2lr8HGiAEAbn2vQP6obCIP-GlBlCWa8Qp2CL0wt9Mg1g3kIv88Iqze7HYc0lUQ514-BpDzwjiL886gC6N5fX-eXEYPcei6KegDubnZ4M_ShWW6fIT9_PVUrMqGuC4jqYrhbGKuMLeL9aNsoLVC9S09SAAfxXBhJlhFlvqEvTikvJT3MGarBwui6ZUgaPOZjuDtt9HCdTchhTY0gTnkVouQU3zZgN7QOFbds7sL0-MMqOVWIEay7yehNPPVuEQRCpcS2XzPvVZObuXQB6m8xmqcsbte201bLEvrRJweTabcEcwkr-r5olcp4hzLyEEK5ftKhxjEY2rJZuheiMgaTNcypMegDA2ex2pC8vGuF-tBVzgCZpSPI_o0hyHhnu72dVDQhFmg3QGeMHGmUVb6uMA7BC1eKDweJkYvwGIpI6YaQV27rGM5Fp7zHjXseCPUskkvV7xPMuZmbdHO79nk9xkP_eItSnEseEByWhj_DlbEC4xeKf5E9tsHsRNVtz_UTgHYukaXcUPH5Vvuc4y93FK8QMYcowUTgbCzzwLhe8Pu2JPP-ZTgzuYyLYu0KpVml5jNig_YVw3m00
https://www.plantuml.com/plantuml/img/TPFBJiCm44Nt-GehguBKY28-eAY43K88YjWFoJGTrR53F8uKKFyTvrctIRDmudDdxemVMHk6acqk0tCWLK09kKXn1rRoirQyfLyK3tUUg3IZhnIG72134SOLAWx5No24I2GO8rho2ih9PSVTWmrSjECBrZS-NItEflVTz7WoV2kOj7eYa3gpE5eM9LN0A9AzfWHxk2C5KlnOD4tEHMH5Xhxb49eXRzhKiRwP41VptdlvKL-TqQ8t71GoWp0Gx-Kjw35XgeZhoLAOSjnePMoEwOM42ikilY8sUMQZyq8YZwBh_TFpy_kVvIu-FYlYPrnH-XgdsfTLPXGoCV2m1HxTIiHYXdzWKY8qHm1oBerjMi_mM6cRxRk-9xXfRRXdn-3ineQhA8fMeLWktUVoDXnFArYZIjqlymy0
https://www.plantuml.com/plantuml/img/RP2n2i9038RtUuhWf4FVmA5BSH445T4nNcE9Ng_bBYs8zjqzhBqMRARa2___awHUq4bJ6bMZVc11iCXiowwo9LbPm4i1W3ReFMomfDtrJbfw6geWEIzNut29Gzr8ttUZmRRIA5pPAB-nHGCs-0ugnoqAWN19_iIUXVBVYds6CZZ46FO7GrJFy3rfHr-8PaucJVxyu-64uoGwSZ_7EzMfoK_MxoI99wgKR1w--W40
https://www.plantuml.com/plantuml/img/POt12O0m34NlJX4ywHwEu0AXXbBKK9gY5EdkHbIgDAVydqUUHpEZ9MW7Z3IwbLeu6W0m2uh0WEcEEZwuJHcOC3sDfQX0rpzHxkWu0jEkwtjmR0Ajn8NEHN4vAqVKiaWkfAkU_Tf0ykLoaqy0
https://www.plantuml.com/plantuml/img/RL8zJyCm4DtpAwnEC5HYO6Gee58nL22bi1_EDRNgsDRTkRH0_pjf0gcJneEbz-xktUUC1KXYPJFU6XU0e585hY5QUV9ESlE5wlOcCJelc5e2w2sKg2PlZFJi16aD6YVgErDAcN-iSas8hY7hnnl_UNNz1pQcm0uGkW8fWLpdQU7nz6aBp6g9BhQAgfD4YM4LnPC1syKtxFqEwYPpjAZ5U7UXje0AnzJch27WALUdPpqKImWzF7SxGzvLwAJ7lreu9AsSUbwP2dl4t26LXmUWYw9o536kv45X9Seoij7ltiP4gwRpzNv0yhWlN_WcQHy92oE3f25-MAELRcoymhsCJF1bXpGU5vf1v0B2RTmnQntlVgRJP9SfUzv9olQ7abhIkeSwvygoMNrUzR7_0W00


Above are the packages from the class diagram expanded. There is one event manager but only one

instance. There can be many activities for the event manager to coordinate. In Environment, Location

inherits from GameObject as it will use the same methods but needs more to track what type of

location it is and how many times it has been visited. In UserInterface - MenuScreen GameScreen,

SettingsScreen, CreditScreen and GameOverScreen all implement the Screen interface as this has

methods all will use but will not be created.

Behavioural diagrams

State diagram for screens

For the initial version of this state diagram [https://samh366.github.io/architecture.html],

MenuScreen and GameScreen were the only screens. Within the MenuScreen it was necessary to

have the ability to start a new game, access options and see credits. Two sub-screens had to be

created to show the options and credits in a pop-up window. To get between these screens buttons

were utilised. When on the GameScreen, by pressing the Esc key the Player can pause the game and

a pop-up paused menu appears. From here the Player can resume or exit back to the menu. To

completely exit the game there will be an “Exit” button on the MenuScreen.

For the second version [https://samh366.github.io/architecture.html], a separate SettingsScreen now

replaces the Options pop-up in the MenuScreen as it needs to be accessible from both the

MenuScreen and GameScreen. The previous screen will be kept so when exiting settings the Player

will go back to the screen they came from.

The above diagram is the final screen state diagram. A separate CreditScreen was added so each

button on MenuScreen led to a new screen. However, when clicking “New game” you will be shown

a short tutorial on how to play before selecting an avatar. Only after these two sub-screens will you

go to the GameScreen. A GameOver screen is also added when the final day is up to display stats.

Then it will take you back to the MenuScreen.

Component-Entity-System Diagram

https://samh366.github.io/architecture.html
https://samh366.github.io/architecture.html
https://www.plantuml.com/plantuml/img/XPHDJyCm38Rl-HNMJe2q6mYf4cXe6fm64aNY01n2QzPeRJeroVYOzjznchRBqcxhfKtiDtxznEf4QLvfK-HCBOLSyOeNaE8NDxc-BwMEnH_2vPKNbAL6FyBUBZvWV0jpb2PEAaJ9TfymfeXDY63s8pHy6grB2UyIabmaIqo1CKOED7fws300SBkZ5wFBIl1y15o1RXPU_6xDgO4OSqnqdSFh3V0UcnrOQWyYNu_u3GjUe3NLs6kyMLsNQ5NDqH5CgNyX3VRxOLlMP8sjue4ERif6uAo2ghrIQiWfHasdBbGdw7O6k9rysF5eYzrpw6EVgOIlq1gieMAzj74lttfs0NkzAe4b_bgBgmgLSlYQS0_5CofJ3E7pDKD83XC9fHxSGyD7bxM3yBJ6oWSHD1gaHF2QqKjd2DSwWvJNdMSMbKoTcK3HDpNdGa91E-7SRLam6wISLfWAtMdTSWZ3Nk9n4gt4GTWJRfXruGB19THqWhtn_YpqQv33CvgBjIXDgxdn49_tHdUemAb61eliH7uHwcv2DsN_U_y0


Above is the initial CES diagram created based on the product brief before the client. This was a very

simplified approach to the game with only basic functionality. There are buildings which have

activities which can only be completed if there is enough energy and time. The Player is able to move

around the map based on Input and can collide with Buildings. The game is over when time is up. An

Enemy was included in the initial diagram to provide more difficulty for the game.

The final CES diagram was too large so it was broken down into the stages of the game. Below is the

diagram of the Menu stage, Option stage, Credits stage and Game Over stage.

No screens were

included in the

initial CES

diagram so they

had to be added.

These are all the

non-game

screens that

allow the player

to start the

game, change

music and sfx

volume, see

credits and see

their final score.

All use a layout

and rely on the

SoundManager.

MainMenu uses

AvatarSelect as

there is a pop-up screen for the Player to select an Avatar and this selection must be stored.

Here is the diagram about

Player-Object interaction. After the

interview, the client specified no

enemies were necessary at this stage

so they were removed. The Player is

able to move and each Avatar has an

Animation. The Player uses

SoundManager when it steps.

InputAdapter allows the Player to react

to arrow key presses (for moving the

player) and other key presses for

interactions. Both the Object and

Player are able to Collide with each

other making the game more natural.



Below is the sub-diagram for rendering the GameScreen.

The Renderer is used

by all entities as it is

responsible for making

assets appear on the

screen. The

GameScreen uses the

Map to make the

background for the

game.

ObjectGenerator is

used by Object to

ensure all relevant

objects appear on the

map. The EscapeMenu

is used by

GameScreen as a

pop-up that appears

when the Player

presses the Esc key.

This will allow them to

pause the game, see

settings and quit.

EnergyBar and DateTime are used by the GameUI to display the Player’s energy level and the current

day and time on the screen. GameScreenLayout, like with the other screens above, is used by

GameScreen to format the screen.

There is also another CES diagram to expand on events and event management which can be seen on

the website [https://samh366.github.io/architecture.html].

Relating Architecture to Requirements

User Requirements

ID Architecture

UR-MENU There is a MainMenu class with “New Game”, “Settings”, “Credits” and “Exit” buttons that
navigate to different features. This is further shown in the screen state diagram above. [*]

UR-CUSTOMISE There is an avatar pop-up menu after the game tutorial (within the MainMenu class) that will
allow you to select between 2 different avatars.

UR-WORLD The GameScreen renders the map, locations and GameObjects onto the screen.
UR-INTERACT When the Player approaches a GameObject, interaction options appear as a DialogueBox.
UR-TIMED The Time and Day classes keep a track of the time and day respectively. When the time gets to

24 hours the day in the Day class is incremented. When it reaches 7 the game ends.

UR-INFO The Energy class stores the energy level of the Player and it is represented as a bar on the
GameScreen.

UR-SOUND The SoundManager class manages when sounds are made. It also controls the music volume
and sfx volume separately.

https://samh366.github.io/architecture.html


UR-SETTINGS The SettingsScreen class allows the user to change the music volume and sfx volume.

UR-SLEEP When the Player does an Activity where isSleepActivity() returns true, energy levels are
replenished back to full by calling replenishEnergy().

Functional System Requirements

ID Architecture
FR-VIEW The game uses topdown graphics and 3rd person sprites with arrow keys that allows the user to

move North, East, South and West according to WASD and Arrow keys

FR-START requires the player to be able to select between avatars which is fulfilled by the Avatar pop-up

screen in the MenuScreen class.

FR-INTERACT1 Interaction initiates a pop-up screen inside the GameScreen which freezes the character

movement until exited through choices or by pressing E

FR-INTERACT2 When a player starts to interact with a building, there shall be a pop-up with text and choices
FR-MENU1 In the MenuScreen class, TextButton(s) such as, “startButton”, “settingsButton”, “creditsButton”

and “exitButton” allows for the creation of buttons that lead to their respective Screens once

clicked.

FR-MENU2 No class for saving the game. This was an intentional choice.

FR-MENU3 While in GameScreen, Window escapeMenu allows the player to escape to MenuScreen by

pressing Esc key followed by the exit button

FR-NAVIGATE State diagram of player moving [https://samh366.github.io/architecture.html]

FR-SLEEP1 EventManager checks time of day before allowing activity. If 16 hours have passed all activities

except sleeping are locked.

FR-SLEEP2 EventManager checks energy class to measure energy level. Disallows every other activity aside

from sleep if energy level drops to 0.

FR-ENERGY1 Energy class and event

FR-ENERGY2 EventManager checks energy class for energy value

FR-WEEK Day class, when on 7th day and time in Time class gets to 24 hours game will stop

FR-TIME Activity class has amount of time it uses up which increases time in time class

Dialogue allows

FR-GAME-PLAY1-4 to make decisions at location. Location has isSleepLocation() etc. to determine which is which.

FR-MENU4 MenuScreen has buttons allowing the player to select between multiple options
FR-COUNTER each Location counts how many times visited, each Activity counts how many times completed

https://samh366.github.io/architecture.html


References

[1] R. Wirfs-Brock. (2006, Jul.). A Brief Tour of Responsibility-Driven Design [Online]. Available:
https://wirfs-brock.com/PDFs/A_Brief-Tour-of-RDD.pdf

https://wirfs-brock.com/PDFs/A_Brief-Tour-of-RDD.pdf

