Change Report

Before beginning to make changes to the inherited deliverables we first began by thoroughly
reading through each document to help us understand exactly the previous group’s ideas,
methodologies and implementations. This gave us a lot of insight into their development on
the project so far and also how we would be able to continue with it.

After reading through each deliverable in detail, they were then compared to our original
deliverables submitted for assessment 1 and compared. This helped us identify aspects of
each of group 16’s deliverables that we thought were missing, implemented incorrectly or in
need of updating.

In addition, the updated user requirements for assessment 2 were consulted to look for
additions that needed to be made to certain deliverables - most notably the requirements
and architecture deliverables due to the inclusion of the leaderboard and the
streaks/achievements.

For each change we wished to make to the deliverables, we first wrote them as suggestion
comments onto copies of group 16’s original deliverables within Google Docs. This allowed
us to speak as a team and discuss our drafted changes to the deliverables. Once these
changes were agreed upon and finalised they were added to our updated deliverables for
assessment 2.

Requirements

Making changes to the requirements deliverable started with reading the original document
submitted by group 16. This document was then compared to our Req1 submission and
requirements that we felt necessary, but were missing on group 16’s deliverable, were added
as suggestions to the document.

SIE2PING T TNEY run Ut OT ENgrgy
FR-MENU4 [The menu shall provide the player with a list of options UR-MENU
FR-COUNTER [The amount of each activity performed shall be counted UR-INFO
To be added:
- The game shall save the overall high score after the player finishes the game and present it
on the leaderboard

- The user shall be able to choose between multiple avatars
- The game shall track when the player completes streaks of certain activities, and these
streaks will be shown on the end screen as hidden achievements

Mon-Functional System Requirements

1D Description User Fit criteria

requirements
MFER-NOCTIMEMT Tha oama chall ha R nacac nf arrhiterture

We also consulted the additional requirements laid out by the client for assessment 2 when
looking to add new requirements. These were added to the suggestions comments similar to
the missing requirements we had found originally.

Once the new requirements had been agreed upon as a team, they were appended to the
existing tables of user requirements as shown below.

UR-SCORE The user shall be informed of the overall score they get [Shall
compared to all the players at the end of the game
UR-ACHIEVEMENTS The user shall get achievements based on certain streaks [Shall
of activities done in the game.

FR-HIGHSCORE ([The game shall save the overall high score after the player [UR-SCORE
finishes the game and present it on the leaderboard

- - R T e i et

UR-AVATAR The user shall be able to choose between multiple avatars [UR-MENU
-FR-STREAKS The game shall track when the player completes streaks of [UR-ACHIEVEMENTS
certain activities, and these streaks will be shown on the

end screen as hidden achievements

Some other small changes to the requirements document were also made such as updating
the deadline to the 23rd May as opposed to the previous assessment 1 deadline & updating
the names on the document to those of members of our team instead of group 16.

Architecture

A lot of the changes had to be made in the architecture as we were required to add new
features to the existing game namely a leaderboard and achievement system. We decided
that the architecture design process and the tools used remain the same as we want to
follow the group 16’s footsteps when modifying the game with our new features. The
changes are reflected as below.

Structural Diagrams (Class Diagram)

SHustleGame
public wigth
public halght 1 4
1.,.3 Public mag
created)
rendes(}
1.1 1.1 1.1
€ Player
paiblic x
public ¥
private speed
peivate direction
public frozen L.
public avatar B SaundManager
gstAl) public musicVolume | jeprinterface DateTime
getv} public sfxVohurme
Sebxn setMusicVolumer Sscreen @Gamescresn EMenuscreen @SettingsScroen | @0ay ETime
B setsfevalumel) 11 1.1
gatDiraction|} playhiusic()
getSpeed|) pauseMusicl)

s leepl)
isFrozeni)
satFrozen()
distanceFramiabject)
mve()
sethvatar()

1.11..3

€ Energy
public energy Envirenment Event
getEnergy(} CCreditSereen BGamelverScreen 0% @location BGametbject | BEventManag
decreaseEnergylamount) 0.
satEnergy(amount]
replenishEmergyl)

SActivity

Old final class diagram

CHustleGame
public width
1...1 public height 1
Tpublic map 131
1.1
create()
render()
1.1
€ Player
public x
public y
private speed
private direction
public frozen
public avatar (€ SoundManager
getX() public musicvolume |yserinterface) DateTime|
getY() public sfxVolume : s T
setX() setMusicvolume() | &Screen @MenuScreen (@ettingsScreen €GameScreen || €Time €Day,
setY() setSfxVolume() 1.1
getDirection() playMusic() {
getSpeed() pauseMusic()
isAsleep()
isFrozen()
setFrozen()
distanceFrom(object)
move()
setAvatar()

1.1

1

public energy Environment| | [Event|

getEnergy() (€CreditScreen (€GameOverScreen €LeaderboardScreen | €@GameObiject [CLocation ‘
decreaseEnergy(amount) 0.
setEnergy(amount)
replenishEnergy()

©EventManage

CActivity

New class diagram which has LeaderboardScreen in the Userinterface. It is shown at the
end of the game which the user can interact with by saving their name and current score to
the leaderboard.

Usarinterface

IS renin
hor)
P |
renderil
resizel)
B GaimsSs iesn
T satupEscapepenyl) FSettingsSoreen
eNUBCIen InzdMapd| gutMusichiolmel) & CraditSeraan
setupTubonall] losdEnvironmentl) getStcvolumed] bli ST
satupAwatarseiection] loadPayert) setMusicvlman P e At
showTime|) et S odurmes |
shewwEnargyRar)

Old class diagram with packages.

Userinterface|

B Gaivslranir Soiesi
public playerStats

@Screen
show()
— < hide()
“render()
resize()

© GameScreen /
(©SettingsScreen

showEnergyBar()

BEE setupEscapeMenu() \
L LETEEEER loadMap() getMusicVolume() | © CreditScreen ®©GameOverScreen
setupTutorial() loadEnvironment() getSfxVolume() blic creditsText blic playerStats
setupAvatarSelection() loadPlayer() setMusicvolume() P2 tsText) public play!
showTime() setSfxVolume()

©LeaderboardScreen
LeaderboardDisplay()
calculateScore()
openTextinput()

New class diagram with packages that has changed with the addition of LeaderboardScreen
with its method in the UserInterface package. This change is for the sake of consistency with
the other diagrams that have LeaderboardScreen.

Behavioural Diagrams (State Diagram for screen)

When the Tth day
has ended

Gamecwericreen Sﬂlingss-:reen'.

Miaiis iy Bubbor clicked Exit button clicked

Avatar selected

Exit button clcked
{previousScrean = GameScresn)

[previcusScreen = MenuScrean)

GameScreen

Settings button - Esc key Resume button
clickad pressed clicked

CreditScreen EscapeMenu

Settings button : ;
chckad Exit button clicked chckad dicked

MenuScrasan

.
Exit button
clicked

¥ Tlut&lriul

Mew game
button clicked

Continue button

clicked

AvatarSelect

Old final state diagram for screen.

CreditScreen o GameOverScreen

/ N\ (”Leaderboard button clicked

GameScreen

e — TN
~ When the 7th day /Esc key 'Resume button
hasended | pressed | clicked

EscapeMenu

Cradits button "Exit button

{Credits button "

Exit button clicked

\Settings button

clicked

Main menu button clicked ~ " Exit button clicked

-~
i i LeaderboardScreen
\EXIt button clicked : clicked

(previousScreen = GameScreen) |

/
__(Main menu button clicked . .
e Settings button clicked

Exit button clicked SettingsScreen <~ ——

~ 4 .
MenuScreen
P

New game . Exit button
button clicked clicked
Tutorial ©

Continue button
\ clicked

|AvatarSelect — — —

Avatar selected

New state diagram for screen. We included LeaderboardScreen and how to access it from
the GameOverScreen.

B CraditsSereenlayout
Hust|eGame game
SCPEen Previussoresn
Window CreditMenu
Table creditTable

Label craditsTitle

Table scrollTable
ScrollPana scroliWindaw
Label text

String game.credits
TextSutton exitButton

ECreditsSorean

@ settingsScreenlayout
HustleGame game

Wi inclow aptionMenu
Tabde optionTable

© Tutorial
Window tuterialWindow
Table avatarselectTable
‘Window tutorialWWindow

TextBution exitButton
Label sattingsTitla
Label musicTitle

Slider musscSlider
Label staTitle

Slider sfxSlider

Tabde sliderTable

class SoundManager
SCFEEn DIeviausscresn

HustleGame game
Table tutorialTakle
Label tutorialTitle
Table scrollTutori
ScrollPane scrall
Label text

[ESattingsScreen E MainMenu

B MainManulayaut
HustleGame game
Imiage tithelmage
Table buttonTable
TextButton startBulton
TextButton settingsButton
TextButton creditsButton
TextButton exitButton
int buttonWidth
Table avatarSelectTable
Window tutorialWindow

& SoundManager
Music awerworkdMusic
Music menuMusic
Sound footstepl
Sound footstep?
baolean foatstepBaol
figat footstepTimer
fhoat steWolurmse
Maat musicvielume
Sound pausesound
Sound dialoguetpenSound
Sound dialoguedptionSaund
Saund Buttansound

String game. butarialText
TextButton cantinue Buttan

CiGamelverSoreen

€ svatarSelect
Table avatarSebectTable
Table avatarTable
Label avatarTitle
HustleGarme game
Tahble avatarButtonTable
IrmageButton avatarGptionl
ImageButton avatarOption2
class GameScreen

& GamaCver
HustleGame game
int hoursStudied
inthoursAecreaticnal
inthoursSlept
Window gameCuwerWindow
Table gameCverTable
Label title
Table scoresTable
TextButton exitButton

SoundManager gamae. soundianager

Stage game. blueBackground

Old component-entity-system diagram

‘@Cred\tsscreen‘
i

‘@Semhgsscreen
i]

1
>)

(©)MainMenu

(©) soundvianager

©c Layout ©

nLayout

@© Tutorial

ttingsScr

(©) cameoverscreen

(© MainMenutayout
Music overworldMusic

HustleGame game
Screen previousScreen
Window creditMenu
Label creditTable

Label creditsTitle

Table scrollTable
ScrollPane scrollwindow
Label text

String game.credits
TextButton exitButton

HustleGame game
Window optionMenu
Label optionTable
TextBLtton exitButton
Label settingsTitle
slider musicslider
slider sfxslider

Table sliderTable

class SoundManager
Screen previousScreen

Window tutorialWindow
Table avatarSelectTable

Table tutorialTable
Label tutorialTitle

Table scrollTutorialTable
ScrolPane scrollwindow
Label text

String game tutorialText
TextButton continueButton

HustleGame game

Image titlelmage
HustleGame game Table buttonTable
TextButton startButton
TextButton settingsButton
TextButton creditsButton
TextButton exitButton

int buttonWidth

Table avatarSelectTable
Window tutorialwindow

Music menuMusic

Sound footstepl

Sound footstep2

boolean footstepBool

float footstepTimer

float sfxvolume

float musicvolume

Sound pauseSound

Sound dialogueOpenSound
Sound dialogueOptionsound

Sound buttonSound

(© Avatarselect

Table avatarSelectTable
Table avatarTable

Label avatarTitle
HustleGame game

Table avatarButtonTable
ImageButton avatarOptionl
ImageButton avatarOption2
class GameScreen

HustleGame game

int hoursStudied

int hoursRecreational

int hoursslept

Window gameOverWindow
Table gameOverTable

Label title

Table scoresTable
TextButton exitButton
TextButton leaderoardBtton

(© Leaderboardscreen

SoundManager game.soundManager
Stage game.blueBackground

HustleGame game

Stage Leaderboardstage
AchievementSystem achievementSystem
Arraylist completedAchievements
Window textwindow

Table textTable

Table scoresTable

Label title

int score

Boolean showText

TextBLtton exitButton

New component-entity-system diagram with added LeaderboardScreen as well as its
attributes. We also modified GameOverScreen to include textButton leaderboardButton to
redirect the player to the LeaderboardScreen.

(€ EventManager
Gamescreen game
HashMap<=5tring, Integer> activityEnergies
HashMap<String, String> objectinteractions
string[] topics
stringl] talkTopics
String eventKey .
String(] args
Image game.blackScreen ..
void game GameOver -
DialogueBox game. dialogueBox

|
! @® BuildingEvent

[Stringl] args
int energyCost
HashMap<String, Integers activityEnergies
@ CoteTime [GameScreen game \
| int game.energy
HustleGame gams | DialogueBox garme dialogueBox |
float daySeconds string(] topies |
Table timeTable (int amaunt
Label timeLabel string choice
Label dayLabel | string(] talkTopics
int day | Image game.energyBar
Window escapeMenu | float game daySeconds |
boolean sleeping int game.day |
woid Gameover [Label garme daylabel
int hour | void GameQver {
String minutes | int hours |
n int game.hoursRecreational {
int game.hoursStudied |
boolean game.sleeping
float secondsSlept
int hoursSlept

@6GameUl (@ Event

ot
pd A(@ DialogueBoxGenerator ™.

Skin skin
int WIDTH
int HEIGHT
Y ¥ int MAXCHARS
€ Energysar Window
Graup energyGroup Table dialogueTable
Label textLabel
:::Q: ;:::‘”:;Ouﬂ,m SelectBox selectBox
Int gne ¥ ! window selectwindow
9y Table selectTable
int choicelndex
string[] options.
String[] events
Label[] optionPointers
Label painter

\

GameScreen gam
DialogueBox game.dialogueBox

(@ SoundManager

Music overworldMusic
Music menuMusic
Sound footstepl

L
@ Inputadapter
TR int keycode

Sound footstep2 - N
boalean footstepBool e apeiien

P SoundManager game.soundManager
float footstepTimer Dial Hox dial B
float sfxVolume 'alaguefox dialoguebiox
TaR e e AT EventManager eventManager

Player player

Sound pauseSound boolean sleeping

Sound dialegueOpensound
sound dialegueOptionSound
Sound buttonSound

Old CES sub-diagram which expands on the events and event management.

_©Fvent

© AchievementSystem
AchievementSystem instance

Achievements firstTimeEatenAchievement

Achievements firstTimeSleptAchievement

p: . Float> activity
Map<String, Map<Integer, Integer>> activ

Achievements distanceTraveledAchievement

ArrayList<Achievements> Achievementslist

©Gameul

{© EnergyBar

| Group energyGroup

[Image energyBar
Image energyBarOutline
int energy

| ©DialogueBox

v (© BuildingEvent
String[] args

. [I int energyCost
p ©DialogueBoxGenerator I
© SoundManager Skin skin GameScreen game
Music overworldMusic inE WIDTH [} | lintgame.energy
Music menul Music int HEIGHT | DialogueBox game.dialogueBox
Sound footstepl [PSS | || stringl] topics
I Window dialogueWindow \ int amount
Soundifoctstep? Table dialogueTable | |String choice
oot toorssenTmer.” et et String] talkTopics
float shxvoldme SelectBox selectBox | |Image game.energyBar
float musicVolume Windewjsslectl/[pdow | float game.daySeconds
e e] Table selectTable | ey
S e d int | Label game.dayLabel
Sound dialogueOpenOptionSound |2t ingl] options | void GameOver
Sound buttonSound String[] events int hours
Label[] optionPointers int game.hoursRecreational
Label pointer / int game.hoursStudie

boolean game.sleeping
float secondsSlept
int hoursSlept

(©Gamescreen

© DateTime) EventManager
HustleGame game

ame
float daySeconds HasQMa;KStrgng. \Sr;tnengge? activityEnergies

© InputAdapter

Table timeTable int keycode " HEF Mo
Label timeLabel Window escapeMenu © NonBuildingEvent e

Label dayLabel SoundManager game soundManager (¢ oc 2 e

Ry, DisiogueBoxidialopueBox DialogueBox game.dialogueBox String[] args

boolean sleeping Player player Image game blackScreen

void GameOver boolean sleeping B?;?ozi?:ﬁagma;?:i; ogues

int hour y

String minutes A:::;:rsnenliystsm achievementsystem

New CES sub-diagram that expands on the events and event management. The new one
has the AchievementsSystem and ScoreSystem classes interconnected with the Event
instance which manages and tracks the real-time update of the player’s state such as
achievements they have achieved as well as the calculating their overall score and the rank

they would get.

Diagrams with No Changes (Player-Object and Component-Entity-System for
Rendering)

The Player-Object interaction diagram remains unchanged because the new features we've
integrated into the game do not affect the existing player-object interactions. Any new assets
will reuse the same implementation as depicted in the current diagram. Similarly, the CES
sub-diagram for rendering the GameScreen has not been updated, as the newly added
features, such as the leaderboard and achievements, operate behind the scenes. Therefore,
any new additions, like new locations, activities, or objects on the map, or new screens in the
game, will follow the existing implementation. The game was designed modularly to facilitate
easy extensions.

Method Selection and Planning

For the method selection and planning, we chose to adopt many of the methodology
decisions made by group 16. This was due to the fact they were very similar to the methods/
tools we had used in assessment 1. We found keeping this the same made sense as it made
it easy for both us to continue and for us to pick up from where group 16 finished. This was
added to Plan2 as shown below:

After picking up the project for assessment 2, it was natural for us (Group 13) to continue
developing the game with the agile approach. This was the approach we selected initially for
assessment 1 for very similar reasons to Group 16 and we felt it to still be suitable for us as the
nature of the development hadn't changed much for assessment 2. We continued with our short
timeframes and regular group mestings to ensure the project stayed on schedule. The agile approach
also meant that the new requirements elicited for assessment 2 were easy to manage and allocate to
group members.

For assessment 2 we continued this approach of using the weekly meetings to focus our
attention on the tasks that needed to be completed. With each member of the group leading a
different deliverable, this was easy as each group member could provide feedback on what tasks had
been completed and which tasks still required work. This enabled us to very easily understand the
progress on the project as a whole and therefore allocate people to assist in other deliverables where
required.

For assessment 2 we will be continuing with all of the choices made by group 16, We've kept
LibGDX as it was both the software we had learned for assessment 1, and also the software group 16
had used for the project we took over. We also continued use of Github, Google Drive and Discord as
we had been using all of these previously for assessment 1.

Group 16 had a nice approach to splitting up the workload between members and assigning
leadership to each deliverable for one person. We implemented this approach for the
assessment 2 deliverables and included that within the document:

Similarly to group 16, for assessment 2 we assigned different team members to different
deliverables to split the workload evenly. Where possible, team membsers were assigned similar tasks
to what they contributed towards assessment 1. The website was assigned to Alex who took
leadership for this deliverable. The Change Report was split between Haigal and Alex. Haiqual took
leadership for this. Implementation was kept to lvo, Caner and Owen as they had been responsible
for the implermentation during assessment 1. Sticking to the original split, lvo and Caner were to
work on the code while Owen worked on the map. Leadership of this task was given to Ivo. The
testing deliverable was assigned to Carys and Shravani for which Shravani was to lead. For user
evaluation this was led by Carys howsever each group member contributed by invigilating their own
user assessments. Finally comtinuous integration was implemented and led by Alex.

Finally, we created an updated version of group 16’s deliverables, tasks tables and work
breakdown diagram. This will allow us to plan the completion of different deliverables as well
as provide something for us to consult during team meetings to gauge progress on the
different deliverables.

Work Breakdown

Deliverables Table

ID Title Due date |Description \Visibility |Relevant tasks
D7 |url2.txt 23/5 \Website Shared [T7

D8 [Change2.pdf 23/5 Requirements Shared [T8.1-T8.6
D9.1 [Impl2.pdf 23/5 Implementation Shared |T10.1-T10.3
D9.2 |Code 23/5 Implementation Shared [T10.1-T10.3
D9.3 |Executable JAR [23/5 Implementation Shared [T10.1-T10.3
D10 [Testing 23/5 [Tests Shared [T11.1-T11.3
D11 [|User Evaluation [23/5 Evaluation of game Shared [T12.1-T12.3
D12 |CI 23/5 Continuous Integration Shared [T13.1 & T13.2
Tasks Table

[Task ID [Description End date |Dependencies [Priority
7 IAdd new information/ deliverables to website 23/5 [T8.1-T8.6 High
18.1 IChange/ update Reql -> Req2 23/5 High
18.2 IChange/ update Arch -> Arch2 23/5 High
18.3 IChange/ update Plan1-> Plan2 23/5 High
18.4 IChange/ update Risk1-> Risk2 23/5 High
18.5 Change/ update Impl1-> Impl2 23/5 High
18.6 IChange/ update Url1-> Url2 23/5 High
T |Write up change report 23/5 IT8.1-T8.6 High
110.1 |Expand current game (code -> interactables) 23/5 IT8.1 High
[T10.2 [Expand current game (map -> campus west) 23/5 I18.1 High
[T10.3 [Add new functionality to game 23/5 IT8.1 High
IT11.1 [Automated tests 23/5 High
T11.2 |Manual Tests 23/5 High
T11.3 [Test Report write up 23/5 [T11.2-T11.3 High
[T12.1 [Ethics Forms for User Evaluations 23/5 High
112.2 [Complete user evaluations 23/5 T12.1 High
[T12.3 |User evaluation write up 23/5 112.2 High
T13.1 Implement Cl to github 23/5 High

Risk Assessment and Mitigation
The risk assessment document had owners of the risk assigned through roles, so to update
this, the people’s names next to the roles had to be changed. These were changed to reflect
the similar group roles that members of our team had during development of the assessment
1 part of the project.

Project Manager

Carys and Shravani

Product Owner

Owen, lvo and Caner

Team Leader

Haiqal and Alex

No further changes were made to the Risk deliverable for assessment 2 as the risk
deliverable produced by group 16 fulfilled all of the requirements required for assessment 2.
Their 4-step approach to risk assessment (Identification - Analysis - Planning - Monitoring)
meant their risk assessment was very thorough and covered every risk we had identified
ourselves in our original Risk1 document.

The addition of the new game features required for assessment 2 did not elicit any new risks
for our group either, and so no new risks needed to be added to accommodate these new
user requirements.

