Change Report

Before beginning to make changes to the inherited deliverables we first began by thoroughly
reading through each document to help us understand exactly the previous group’s ideas,
methodologies and implementations. This gave us a lot of insight into their development on
the project so far and also how we would be able to continue with it.

After reading through each deliverable in detail, they were then compared to our original
deliverables submitted for assessment 1 and compared. This helped us identify aspects of
each of group 16’s deliverables that we thought were missing, implemented incorrectly or in
need of updating.

In addition, the updated user requirements for assessment 2 were consulted to look for
additions that needed to be made to certain deliverables - most notably the requirements
and architecture deliverables due to the inclusion of the leaderboard and the
streaks/achievements.

For each change we wished to make to the deliverables, we first wrote them as suggestion
comments onto copies of group 16’s original deliverables within Google Docs. This allowed
us to speak as a team and discuss our drafted changes to the deliverables. Once these
changes were agreed upon and finalised they were added to our updated deliverables for
assessment 2.



Requirements

Making changes to the requirements deliverable started with reading the original document
submitted by group 16. This document was then compared to our Req1 submission and
requirements that we felt necessary, but were missing on group 16’s deliverable, were added
as suggestions to the document.
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FR-MENU4 [The menu shall provide the player with a list of options UR-MENU
FR-COUNTER [The amount of each activity performed shall be counted UR-INFO
To be added:
- The game shall save the overall high score after the player finishes the game and present it
on the leaderboard

- The user shall be able to choose between multiple avatars
- The game shall track when the player completes streaks of certain activities, and these
streaks will be shown on the end screen as hidden achievements
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We also consulted the additional requirements laid out by the client for assessment 2 when
looking to add new requirements. These were added to the suggestions comments similar to
the missing requirements we had found originally.

Once the new requirements had been agreed upon as a team, they were appended to the
existing tables of user requirements as shown below.

UR-SCORE The user shall be informed of the overall score they get  [Shall
compared to all the players at the end of the game
UR-ACHIEVEMENTS The user shall get achievements based on certain streaks [Shall
of activities done in the game.

FR-HIGHSCORE ([The game shall save the overall high score after the player [UR-SCORE
finishes the game and present it on the leaderboard
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UR-AVATAR The user shall be able to choose between multiple avatars [UR-MENU
-FR-STREAKS The game shall track when the player completes streaks of [UR-ACHIEVEMENTS
certain activities, and these streaks will be shown on the

end screen as hidden achievements

Some other small changes to the requirements document were also made such as updating
the deadline to the 23rd May as opposed to the previous assessment 1 deadline & updating
the names on the document to those of members of our team instead of group 16.



Architecture

A lot of the changes had to be made in the architecture as we were required to add new
features to the existing game namely a leaderboard and achievement system. We decided
that the architecture design process and the tools used remain the same as we want to
follow the group 16’s footsteps when modifying the game with our new features. The
changes are reflected as below.
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New class diagram which has LeaderboardScreen in the Userinterface. It is shown at the
end of the game which the user can interact with by saving their name and current score to
the leaderboard.
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New class diagram with packages that has changed with the addition of LeaderboardScreen
with its method in the UserInterface package. This change is for the sake of consistency with
the other diagrams that have LeaderboardScreen.

Behavioural Diagrams (State Diagram for screen)
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New state diagram for screen. We included LeaderboardScreen and how to access it from
the GameOverScreen.
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New component-entity-system diagram with added LeaderboardScreen as well as its
attributes. We also modified GameOverScreen to include textButton leaderboardButton to
redirect the player to the LeaderboardScreen.
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Old CES sub-diagram which expands on the events and event management.
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New CES sub-diagram that expands on the events and event management. The new one
has the AchievementsSystem and ScoreSystem classes interconnected with the Event
instance which manages and tracks the real-time update of the player’s state such as
achievements they have achieved as well as the calculating their overall score and the rank

they would get.

Diagrams with No Changes (Player-Object and Component-Entity-System for
Rendering)

The Player-Object interaction diagram remains unchanged because the new features we've
integrated into the game do not affect the existing player-object interactions. Any new assets
will reuse the same implementation as depicted in the current diagram. Similarly, the CES
sub-diagram for rendering the GameScreen has not been updated, as the newly added
features, such as the leaderboard and achievements, operate behind the scenes. Therefore,
any new additions, like new locations, activities, or objects on the map, or new screens in the
game, will follow the existing implementation. The game was designed modularly to facilitate
easy extensions.



Method Selection and Planning

For the method selection and planning, we chose to adopt many of the methodology
decisions made by group 16. This was due to the fact they were very similar to the methods/
tools we had used in assessment 1. We found keeping this the same made sense as it made
it easy for both us to continue and for us to pick up from where group 16 finished. This was
added to Plan2 as shown below:

After picking up the project for assessment 2, it was natural for us (Group 13) to continue
developing the game with the agile approach. This was the approach we selected initially for
assessment 1 for very similar reasons to Group 16 and we felt it to still be suitable for us as the
nature of the development hadn't changed much for assessment 2. We continued with our short
timeframes and regular group mestings to ensure the project stayed on schedule. The agile approach
also meant that the new requirements elicited for assessment 2 were easy to manage and allocate to
group members.

For assessment 2 we continued this approach of using the weekly meetings to focus our
attention on the tasks that needed to be completed. With each member of the group leading a
different deliverable, this was easy as each group member could provide feedback on what tasks had
been completed and which tasks still required work. This enabled us to very easily understand the
progress on the project as a whole and therefore allocate people to assist in other deliverables where
required.

For assessment 2 we will be continuing with all of the choices made by group 16, We've kept
LibGDX as it was both the software we had learned for assessment 1, and also the software group 16
had used for the project we took over. We also continued use of Github, Google Drive and Discord as
we had been using all of these previously for assessment 1.

Group 16 had a nice approach to splitting up the workload between members and assigning
leadership to each deliverable for one person. We implemented this approach for the
assessment 2 deliverables and included that within the document:

Similarly to group 16, for assessment 2 we assigned different team members to different
deliverables to split the workload evenly. Where possible, team membsers were assigned similar tasks
to what they contributed towards assessment 1. The website was assigned to Alex who took
leadership for this deliverable. The Change Report was split between Haigal and Alex. Haiqual took
leadership for this. Implementation was kept to lvo, Caner and Owen as they had been responsible
for the implermentation during assessment 1. Sticking to the original split, lvo and Caner were to
work on the code while Owen worked on the map. Leadership of this task was given to Ivo. The
testing deliverable was assigned to Carys and Shravani for which Shravani was to lead. For user
evaluation this was led by Carys howsever each group member contributed by invigilating their own
user assessments. Finally comtinuous integration was implemented and led by Alex.

Finally, we created an updated version of group 16’s deliverables, tasks tables and work
breakdown diagram. This will allow us to plan the completion of different deliverables as well
as provide something for us to consult during team meetings to gauge progress on the
different deliverables.



Work Breakdown

Deliverables Table

ID Title Due date |Description \Visibility |Relevant tasks
D7 |url2.txt 23/5 \Website Shared [T7

D8  [Change2.pdf 23/5 Requirements Shared  [T8.1-T8.6
D9.1 [Impl2.pdf 23/5 Implementation Shared  |T10.1-T10.3
D9.2 |Code 23/5 Implementation Shared  [T10.1-T10.3
D9.3 |Executable JAR  [23/5 Implementation Shared  [T10.1-T10.3
D10 [Testing 23/5 [Tests Shared  [T11.1-T11.3
D11 [|User Evaluation [23/5 Evaluation of game Shared  [T12.1-T12.3
D12 |CI 23/5 Continuous Integration Shared  [T13.1 & T13.2
Tasks Table

[Task ID  [Description End date |Dependencies [Priority
7 IAdd new information/ deliverables to website 23/5 [T8.1-T8.6 High
18.1 IChange/ update Reql -> Req2 23/5 High
18.2 IChange/ update Arch -> Arch2 23/5 High
18.3 IChange/ update Plan1-> Plan2 23/5 High
18.4 IChange/ update Risk1-> Risk2 23/5 High
18.5 Change/ update Impl1-> Impl2 23/5 High
18.6 IChange/ update Url1-> Url2 23/5 High
T |Write up change report 23/5 IT8.1-T8.6 High
110.1  |Expand current game (code -> interactables) 23/5 IT8.1 High
[T10.2  [Expand current game (map -> campus west) 23/5 I18.1 High
[T10.3  [Add new functionality to game 23/5 IT8.1 High
IT11.1  [Automated tests 23/5 High
T11.2  |Manual Tests 23/5 High
T11.3 [Test Report write up 23/5 [T11.2-T11.3 High
[T12.1  [Ethics Forms for User Evaluations 23/5 High
112.2  [Complete user evaluations 23/5 T12.1 High
[T12.3  |User evaluation write up 23/5 112.2 High
T13.1 Implement Cl to github 23/5 High

Risk Assessment and Mitigation
The risk assessment document had owners of the risk assigned through roles, so to update
this, the people’s names next to the roles had to be changed. These were changed to reflect
the similar group roles that members of our team had during development of the assessment
1 part of the project.

Project Manager

Carys and Shravani

Product Owner

Owen, lvo and Caner

Team Leader

Haiqal and Alex

No further changes were made to the Risk deliverable for assessment 2 as the risk
deliverable produced by group 16 fulfilled all of the requirements required for assessment 2.
Their 4-step approach to risk assessment (Identification - Analysis - Planning - Monitoring)
meant their risk assessment was very thorough and covered every risk we had identified
ourselves in our original Risk1 document.




The addition of the new game features required for assessment 2 did not elicit any new risks
for our group either, and so no new risks needed to be added to accommodate these new
user requirements.



