
UNIVERSITY OF YORK

DEPARTMENT OF COMPUTER SCIENCE

Method Selection and Planning
Cohort 2 - Group 16 (Skloch)

Group Members:
Charlotte MacDonald

Hollie Shackley
Luis Benito
Kaustav Das
Sam Hartley

Owen Gilmore



Outline and Justification of our Software Engineering Methods

Due to the short time frame to complete the project, it was clear that multiple stages of the

software engineering process would have to be completed at the same time. This fitted an agile

approach. It was also reasonable to suspect that plans would change significantly each week as it

would be hard to plan how long each task would take when all team members had other

commitments and relatively little experience of creating a game or using game engines. Agile fitted

this and also the concept of having flexible interactions with the customer - for example, after the

initial customer meeting, there were informal conversations that happened in each practical. Agile

approaches prefer shorter timeframes, encourage face-to-face conversations and encourage regular

reflection on efficacy [1]. These fitted well to our organisation of having a face-to-face meeting with

all team members each week. As these meetings were 2 hours long, they provided ample time to

reflect on the previous week, plan for the following week and have detailed discussions about the

deliverables. The assessment format of releasing a partial solution first also fitted well to the agile

manifesto [1].

The main inspiration for our methods and organisation came from scrum. As we were

already committed to weekly meetings, it was natural to create weekly sprints. The start of each

meeting was then dedicated to a review and retrospective of the sprint using ideas from scrum to

reflect on what did and didn’t happen and which tasks went well, were challenging or were

problematic. This allowed us to reflect on anything that needed to change for the next sprint before

planning the sprint and adapting overall project plans as needed. Work that was categorised as not

done was able to be pushed back to a more suitable time. The retrospective also allowed for

reflection on unforeseen dependencies that had limited progress which allowed for the re-ordering

of tasks and prioritisation of what was left.

We also drew inspiration from the spiral lifecycle as this produces good documentation

control [2] and a large part of the project is based around documentation. This documentation is also

reviewed in every loop which was very similar to how we created new plans and reviewed the risk

assessment each week. However, we only used certain parts of this lifecycle as adapting it well would

not have fitted our size of project and scheduling was extremely important to the project [2].

Identification and Justification of Development and Collaboration Tools Used

The customer briefing placed the constraint of using only Java for the implementation and

using a gaming engine written in Java. The requirements for the game included that it would be 2D.

Research of various 2D Java game engines was undertaken and LibGDX was chosen as this has

specifically been built for 2D games and interlinks well with Github. Other alternatives, including J

Monkey and LWJGL, were considered. Many team members liked the look of J Monkey however it

seemed much more suited to 3D game development and the assessment brief specified that the

game must be 2D. By looking at reviews of LWJGL, it seemed that it was difficult to learn at first so it

was felt that this would be an unnecessary delay and inefficient to choose [3]. IntelliJ was selected as

the IDE as LibGDX relies heavily on Gradle to assemble projects. Originally, the plan was to use

VSCode as all team members had used it before including for Java and it was already on all

department machines but this does not interact well with Gradle and would have created

unnecessary difficulty during implementation. After finding that IntelliJ was also available on the

department machines and would work much better, it was agreed upon.

Github was chosen for the code base and website as several team members had prior

experience and it is the standard tool. Other alternatives were briefly considered such as Apache



Subversion but no team members had prior experience with these so it was felt that they would add

unnecessary delays and extra work of becoming experienced with using them first. In addition,

Github encourages small commits as well as branching and merging which worked well with our agile

approach. Github was also selected to host the website as all team members either had prior

experience or would be gaining experience through its use in the implementation. Google Drive was

used for collaboration for the other deliverables due to the live collaboration features and all team

members having access and prior experience. Using Google Docs for the deliverables also had the

advantage of version control so any changes could always be reverted if necessary. Being able to add

comments easily to Google Docs also allowed collaboration on documents without having to switch

between multiple platforms. Google Slides was also used for scrum reviews and retrospectives as it

provided easily movable shapes and text boxes to categorise if targets for the week had been met or

not. It also allowed all team members to add in their thoughts and for this to easily be presentable in

meetings.

For collaboration such as suggesting ideas outside of meetings, Discord was agreed as the

platform to use. Slack was considered but no team members had experience of using it whereas all

had experience of Discord. Whatsapp was also considered but Discord was felt to be more suitable as

it was better suited for sharing larger amounts of text and channels would allow different

deliverables to be discussed in their own areas to help organisation. Using Discord fit well with our

scrum-inspired methods as it allowed for very frequent communication between team members. For

architectural diagrams, the decision was made to use PlantUML. This was because this works well

with Google Docs and so it would be easy to add diagrams to documents but also to change them

during the evolution of the document and the project. PlantUML was also used for other diagrams

including those in the planning process. This reduced the bus factor as it meant that more people

were aware of and experienced with the language being used for the architectural diagrams.

Alternatives considered included Mermaid and Graphviz but these did not have the benefits of

PlantUML.

As well as the constraint of only using Java for implementation, there was also the constraint

of only using tools available on department machines so that if team members weren’t able to use a

personal device or access the tools personally, they would still be able to access the full project and

contribute well. Available expertise was taken into account for each decision.



Team Organisation

Team members were assigned to 15 marks from the 6 deliverables. Most team members

wanted to be on more than one deliverable to gain more experience. As the website had so few

marks allocated, this was assigned to just one person. However, all other deliverables had a minimum

of 2 team members working on them to lower the bus factor. Assignment started by assigning team

members to areas that they had experience of in order to keep the project as efficient as possible.

Team members were then assigned to anything they particularly wished to do and finally the gaps

were filled.

As there were 6 deliverables and 6 team members, each team member took on leadership

for one deliverable. The website was assigned to Luis so he took on the leadership role for this

deliverable. Implementation was split between Sam (60%) and Owen (40%). As Sam had the biggest

proportion of marks, he took this one on. Method selection and planning was split evenly between

Hollie (50%) and Luis (50%). As Luis already had a leadership role, Hollie took this on for this

deliverable. Requirements were split between Hollie (50%), Luis (25%) and Kaustav (25%). As Luis and

Hollie already had roles, Kaustav took on the leadership role. Risk assessment and mitigation was

split evenly between Kaustav (50%) and Charlotte (50%). As Kaustav already had a leadership role,

this was taken on by Charlotte. Architecture was split between Charlotte (45%), Luis (9%), Kaustav

(23%) and Owen (23%). As Charlotte, Luis and Kaustav already had roles, Owen took the leadership

role. This approach was suitable for the project as it was made clear that equitable work allocation

was expected and so no team member should be given more responsibility than another. This

approach also avoided joint leadership for any deliverable. Deliverable leaders were responsible for

splitting the work in that deliverable between the team members assigned to work on it.

The risk management process required that 3 roles be designated. These were project

manager, product owner and team leader. To again ensure equitable work allocation, each role was

allocated to 2 team members. As the primary product is the game, Owen and Sam were selected as

product owners as they were completing the implementation deliverable. Charlotte and Kaustav

were selected as team leaders as they were responsible for the risks and mitigation deliverable and

so were naturally leading that process. Hollie and Luis were selected as project managers as they

were responsible for the planning deliverable which fits into the scope of project management.

There was also the role of upper management provided by the customer. This was available if

it was needed to solve team disputes or any other issues but wasn’t needed. The customer was also

the main stakeholder and the only stakeholder who decided requirements. Communication with the

stakeholder was first through a formal client meeting to gather more information about

requirements. It was then continued through weekly discussions during practical sessions where

smaller questions were clarified and updates on progress were given.

Decisions were mostly made through unanimous decision as there was very little

disagreement. However, where there was any disagreement, the decision was first attempted to be

made through the majority opinion. If opinion was equally split, the decision was made by the leader

of the deliverable it related to.



Work Breakdown

The work breakdown structure was created using the assessment document to split into deliverables

which were then further broken down. The product brief was used to break down the

implementation deliverable.

Deliverables Table

ID Title Due date Description Visibility Relevant tasks
D1 url1.txt 21/3 Website Shared T1
D2.1 Req1.pdf 21/3 Requirements Shared T2
D2.2 Questions for

client
29/2 Preparation of questions for client

interview
Internal T2.2

D3 Arch1.pdf 21/3 Architecture Shared T3
D4 Plan1.pdf 21/3 Methods and planning Shared T4
D5 Risk1.pdf 21/3 Risk assessment and mitigation Shared T5
D6.1 Impl1.pdf 21/3 Implementation Shared T6.6
D6.2 Code 21/3 Implementation Shared T6.1-T6.5
D6.3 Executable JAR 21/3 Implementation Shared T6.1-T6.5
Tasks Table

Task ID Description Start date End date Dependencies Priority
T1.1 Create and format website 21/2 27/2 High
T1.2 Add all content and links needed to

website
12/2 12/3 T1.2 High

T2.1 Create requirements referencing system 28/2 5/3 High
T2.2 Prepare for and have client meeting 21/2 29/2 High
T2.3 Give statement of user requirements 28/2 5/3 T2.1, T2.2 High
T2.4 Give statement of system requirements 28/2 5/3 T2.1, T2.2 High
T2.5 Introduction to requirements 6/3 12/3 T2.2 High
T2.6 Single statement of need 6/3 12/3 T2.2 Medium
T3.1 Diagrammatic representations of product’s

architecture
21/2 12/3 High

T3.2 Statement of languages and tools 21/2 12/3 High
T3.3 Justification for architecture 21/2 12/3 High
T3.4 Initial design and evolution 21/2 12/3 High
T3.5 Evidence of design process followed 21/2 12/3 T3.1 High

https://www.plantuml.com/plantuml/img/RLHDRzim3BthL-WSeC2AOHVdqgnVQ86jGDAXPqQY7Isov95IYkpNZvATD1xgaqnIJu-FJxhX19JUjwnuxy801Bsss4BswI66j75_KN_xeXRw_kVZjLun8tEF8UbhjLZeDzooIoZBXRubXEHYg3yFaNf8PTdS2eniK62jA_bbsRZ6FzaH5YIk6vv2ecYpEI4q6nSwZqhefLgcOgi3ebtMx2z6KdG1CeOtHvRgJn9hR94m605LN8igZHMPdV0tATFOn9s3JYIed1RDTtBOpYWe3w7Bq24h25Qd63shp2TQpvcJQvqPXMWZARWuOQovGpRaXbAX1T05KGMyiiYk2rfG5HwYpoUf5itzmLcXZgLwgXee6Xd4gJSF9xJBurIA-dybcX-OTj5gHe-ZrgMDGReA8is8zvAJTm4hbT-pXcG47Dlq3WAEePCYfA9eNq4dEaz2zc9FmLVMiSdC4qPLRNvMeJv8Ls1sGbj5wY0uXhC8-XLupph1rkEaedS7fFBFgeP7m3V4lJyg3Z3mBegvvBpItgJzZ4U9pyLkrext6iukh-nx6L3tGQNMg1w2kA3Mp8Rn2jliWII8BCcpRbGs4NPEl4VLUq_zu2l0nwtPOBhAGrq-Of3klEwW7vtvKbNIA0ffaD4TN3fMbzQCj286aO6pHnm-YwTin_hc72y6rQ9VSSZo8qTefgiijZmTDKxXKTZeH63sSlrAO3MbjObPhlaOV5wjPwz1yvNibJmjH-tTba0k5LTp5PqJQnjDBZeiLVbkC5XvZlu1


T3.6 Relation of architecture to requirements 28/2 12/3 T2.2, T2.3 High
T4.1 Outline and justification of methods and

tools including alternatives considered
6/3/24 12/3 High

T4.2 Outline and explanation of team
organisation

6/3/24 12/3 High

T4.4 Work breakdown diagram with
explanation

21/2 27/2 High

T4.5 Deliverables table 21/2 27/2 High
T4.6 Tasks table 21/2 27/2 T4.5 High
T4.7 Discussion of plan evolution and Gantt

charts
21/2 12/3 Meetings,

previous charts
Medium

T5.1 Risk register 21/2 27/2 High
T5.2 Create mitigation and contingency

strategies
21/2 27/2 T5.1 High

T5.3 Describe and justify risk management
process and format of risk register

21/2 27/2 T5.1, T5.2 High

T5.4 Continued risk reassessment 21/2 12/3 T5.1 Medium
T6.1 Set-up implementation 21/2 27/2 High
T6.2 Create one of each activity location 28/2 12/3 T6.1 High
T6.3 Create game tracker 28/2 12/3 T6.1 High
T6.4 Create counter 28/2 12/3 T6.1 High
T6.5 Document code and create JAR 28/2 12/3 T6.2, T6.3, T6.4 High
T6.6 List 3rd-party libraries and assets with

licences and discussion of licence
suitabilities

28/2 12/3 T6.2, T6.3, T6.4 High

Discussion of Plan Evolution

The Gantt charts [please see Gantt Charts website tab] were updated after each weekly meeting to

reflect changes in the plan and variations between the work that was intended to be completed and

what was actually completed. As we’d adapted a scrum methodology, each meeting started with a

sprint review and retrospective to identify what work had been completed and any issues that team

had faced. A new plan was agreed for the remainder of the project. Small changes were required

each week. These mostly involved extending the number of days required for tasks or pushing back

tasks due to unforeseen dependencies. We started by leaving a spare week for anything that ran over

and for proofreading. After the week 2 meeting, the website hadn’t been created and the progress

with architecture was behind. Luis asked to be moved off implementation so Sam was moved to this

and Luis took on methods selection. After the week 3 meeting, the website, user requirements and

non-functional requirements needed to be pushed back. User requirements being pushed back

restricted the ability to finish functional system requirements and also held back architecture and

implementation. After the week 4 meeting, it was clear that some deliverables needed a bit of extra

time so these were extended and the proof reading time shortened to accommodate this. It was also

necessary to add a task of a week 5 re-plan as things hadn’t been finished as hoped. It was also

necessary to push back the methods selection write-up.

https://samh366.github.io/ghantt_chart.html


References

[1] K. Beck, et al. (2001). Principles behind the Agile Manifesto. Manifesto for Agile Software

Development. [Online]. Available: https://agilemanifesto.org/principles.html [Accessed: 13 March

2024].

[2] A. Garg, R. K. Kaliyar, and A. Goswami (2022). PDRSD-A systematic review on plan-driven SDLC

models for software development. 8th International Conference on Advanced Computing and

Communication Systems, Coimbatore, India, Mar. 25-26, 2022, IEEE, 2022

[3] B. Refi (2023, Aug. 3) Java Game Engines: Top Choices For Game Development. Bluebird. [Online].

Available at: https://bluebirdinternational.com/java-game-engines/ [Accessed: 14 February 2024].

https://agilemanifesto.org/principles.html
https://bluebirdinternational.com/java-game-engines/

