UNIVERSITY OF YORK
DEPARTMENT OF COMPUTER SCIENCE

Architecture
Cohort 2 - Group 13

TAKEN OVER FROM GROUP 16

Group Members:

Carys Hoile
Ivo Hadley
Shravani Baviskar
Alex Kleijwegt
Owen Codrai
Caner Cetinkaya
Haigal Mohammad Nazli

Architecture Design Process

Our team used Responsibility-Driven Design (RDD) as the method to create the initial design of our
system. It is specialised for object-oriented design which is how we have decided to implement the
product. The aim of RDD is to maximise abstraction, distribute behaviour and provide flexibility [1].
The first step was to consider the product brief, interview with the client and requirements for a
detailed description of the system. A designer story was developed to help us understand the key
parts of the design. By underlining nouns in the product brief the main candidate objects were found
based on the themes. With these we created CRC (Candidate, Responsibilities, Collaborators) cards,
each with a small description of the concept and stereotypes. Next, from grouping the CRC cards it
was clear some were unnecessary as they duplicated functionality so were removed. For instance, the
Cell card was unnecessary as the player can move freely throughout the map so it doesn’t need to be
split into squares. Also, the GamePauser is not required as this can be done in GameScreen. Finally,
individual responsibilities and collaborators were added to the cards. Collaborators are other cards
that will need to be interacted with in order to meet responsibilities. These initial CRC cards with
responsibilities and collaborators can be seen on the website
[https://samh366.github.io/crc_cards.html].

Creating CRC cards is merely an initial estimate of what classes will be required to fulfil the product

brief. When we were happy after looking through this a few times, we moved onto trying to map out
these CRC cards to UML diagrams. At the outset we started with sketches drawn by hand as this allows
for informal discussion where we don’t have to focus on syntax and just lay out ideas. Then we moved
to a tool called plantUML for formal UML diagrams from the sketches. A variety of diagrams were
made to show the structure and behaviour of the system including class, sequence and state diagrams.
Many iterations of each diagram were created throughout the project as new features and
improvements were made.

UML Diagrams

Tools used

To create the structural and behavioural diagrams needed to represent the system we used plantUML.
One reason we selected it was because it can be used across multiple different types of platforms: in
browser; embedded in a Google Document with the plantUML Gizmo extension and with IntelliJ IDEA’s
plugin by simply making a .puml file. As we are already using Intelli) for the implementation it’s an IDE
the whole team should already have installed and is available on lab computers. The code is very
human-readable and the documentation is well developed with lots of examples making it simple to
learn and implement. One issue with PlantUML is that in the diagrams the arrows can go in sub-
optimal routes which can overcomplicate them. The text was also often very small so to fix these issues
we tried altering the arrow length and text size.

Structural Diagrams

Class diagram with packages for the whole system
When creating the initial class diagram [https://samh366.github.io/architecture.html] it was clear it

would be very cluttered as there are many classes so we broke it down into packages where possible.
The Screen package was for all screens used throughout the game (MenuScreen, GameScreen and
SettingsScreen). The Event package was for coordinating and managing all the in-game events
(EventManager, Activity and OptionDialogue). GameObject and Location are in the Environment

https://samh366.github.io/crc_cards.html
https://samh366.github.io/architecture.html

package as they are to be placed throughout the map. DateTime is a package for the date and time as
they are closely linked and rely on each other when it comes to incrementing the day. HustleGame,
Player, Map and Energy didn’t quite fit into packages so have been left alone.

For the next version [https://samh366.github.io/architecture.html], an interface called Screen was

added as all screens had attributes/methods in common but no Screen instance will ever need to be
created. This means all screen classes in this package will inherit from the Screen class. A
SettingsScreen was also added as we realised a separate screen would be best for this rather than
including it in the MenuScreen. The Screen package was changed to Userinterface so as not to confuse
with the new interface also called Screen. The map class was removed as in the game it would be an
asset rather than its own class. Relationships between classes/package classes were changed so
Environment and Event now relate to GameScreen instead of HustleGame. This is because they are
only needed and will be rendered/used on this screen.

CHustleGame
public width
1...1 public height ;4
public map e
" create()
render()

C Player
public x
public y
private speed
private direction
public frozen 1.1
public avatar € soundManager
getx() public musicvolume |yserinterface| DateTime|
gety() public sfxVolume B . ; 1.1
setX() setMusicVolume() Lscreen ©MenuScreen €SettingsScreen €GameScreen CTime ©Day '
setY() setSfxVolume() 1..11..1
getDirection() playMusic() \
getSpeed() pauseMusic()
isAsleep()
isFrozen()
setFrozen()
distanceFrom(object)
move()
setAvatar()
1..11...1
C Energy
public energy Environment Event|

getEnergy() CCreditScreen (€GameOverScreen (ClLeaderboardScreen CGameObject ©Location CEventManage
decreaseEnergy(amount) 0.t
setEnergy(amount)
replenishEnergy()

CActivity

Above is the final class diagram. A CreditScreen was added as this is now necessary, as well as setup
screens as methods in MenuScreen for the tutorial and avatar selection which shouldn’t need their
own class. A GameOver screen was also added which implements the Screen interface. This displays
final stats and has a button leading to the MenuScreen. Music and sound effects were not necessary
but we had time to implement them and thought they would be a nice addition so a SoundManager
class was created to control how sounds are used in the game. OptionDialogue was also renamed to
DialogueBox as it was deemed a clearer name.

For the second phase of the assessment, we were required to add features such as leaderboard and
achievement to the game. The diagram has been updated to accommodate the changes as seen by
the inclusion of LeaderboardScreen — which also shows the achievements achieved during the
gameplay — in the UserInterface. These features will be further explained later in the report.

https://samh366.github.io/architecture.html

Event| Enviro T\ DateTime)
©OptionDialogue
private choice @Gameobject © Time @© pay
final question © 5 5
priva?e visible .C,EVEntMan:;(ger private time private day
getChoaice() e"e"z(le"e”t ey) getX() getTime() getDay()
setChoice() eventl() getY() incrementTime() setDay(int newDay)
getQuestion() event2() put() resetTime() incrementDay()
setVisible(visible) 1.1
isVisible()
1-# Userinterface
= I
© Activity ws;fen
private timeConsumed @ Location hide()
private energyConsumed - render)
private timesCompleted final name resize(}
getTimeConsumed() private timesVisited
setTimeConsumed() 3 3 0 GameScreen X
getEnergyConsumed() Isg‘atLOEatlotn() © MenuScreen | SeLuPEscapeMen() S :eingsScreen) ©lLeaderboardscreen
setEnergyConsumed() isSleepLocation() loadMapi) getMusicVolume() (€ CreditScreen ©GameOverScreen | u. dorhaardDisplay()
i isRecreationalLocation() setupTutorial(} loadEnvironment() getSfxVolumel) npiic creditsText public playerStats IculateS (]p Y
getTimesCompleted() isStudyLocation() setupAvatarSelection() loadPlayer() setMusicVolume() g":xT‘zlfmeﬁ"
setTimesCompleted() T 4 Visited() showTime() setSfxVolume() P P
isEatActivity() getTimesVisite showEnergyBar()
isSleepActivity() setTimesVisited()
isRecreationalActivity()
isStudyActivity()
isEnoughEnergy()
isEnoughTime()

Above are the packages from the class diagram expanded. There is one event manager but only one
instance. There can be many activities for the event manager to coordinate. In Environment, Location
inherits from GameObject as it will use the same methods but needs more to track what type of
location it is and how many times it has been visited. In Userinterface - MenuScreen GameScreen,
SettingsScreen, CreditScreen and GameOverScreen all implement the Screen interface as this has
methods all will use but will not be created. In line with the second phase of the assessment, we have
added LeaderboardScreen and its functions in the Userinterface to reflect the changes we have made.

Behavioural diagrams

State diagram for screens
For the initial version of this state diagram [https://samh366.github.io/architecture.html],

MenuScreen and GameScreen were the only screens. Within the MenuScreen it was necessary to have
the ability to start a new game, access options and see credits. Two sub-screens had to be created to
show the options and credits in a pop-up window. To get between these screens buttons were utilised.
When on the GameScreen, by pressing the Esc key the Player can pause the game and a pop-up paused
menu appears. From here the Player can resume or exit back to the menu. To completely exit the
game there will be an “Exit” button on the MenuScreen.

For the second version [https://samh366.github.io/architecture.html], a separate SettingsScreen now

replaces the Options pop-up in the MenuScreen as it needs to be accessible from both the
MenuScreen and GameScreen. The previous screen will be kept so when exiting settings the Player
will go back to the screen they came from.

https://samh366.github.io/architecture.html
https://samh366.github.io/architecture.html

GameScreen

When the 7th day /Esc key 'Resume button

has ended pressed clicked
CreditScreen GameOverScreen ‘Es(apeMenu
Leaderboard butten clicked
Credits button] . 3 . . . Exit button clicked Settings button
LeaderboardSt
clicked Exit button clicked LeaderboardScreen Main menu button clicked Exit button clicked (previousScreen = GameScreen) clicked
Main menu butten clicked) Avatar selected
- s 4 Settings button clicked
- MenuScreen . Exit button clicked . SettingsScreen -
New game Exit button
button clicked clicked

Tuterial &

Continue button
clicked

AvatarSelect

The above diagram is the final screen state diagram. A separate CreditScreen was added so each
button on MenuScreen led to a new screen. However, when clicking “New game” you will be shown a
short tutorial on how to play before selecting an avatar. Only after these two sub-screens will you go
to the GameScreen. A GameOver screen is also added when the final day is up to display stats. Then
it will take you back to the MenuScreen or LeaderboardScreen. In regards to the LeaderboardScreen,
you would be redirected to the leaderboard screen when you click on the leaderboard button on the
GameOverScreen. On this screen, you can look at the previous scores accomplished by other users as
well as putting your current score to the leaderboard to compare them with each other. Just beside
the leaderboard is the achievements list where you would also be able to look at achievements you
have obtained after completing certain streaks of activities in the game. After that, you can go back to
the MenuScreen to start a new game or anything else you can do in the menu.

Component-Entity-System Diagram

Enemy |

(P\ayer\ '-Bulldlng |

[A:tw\ty\ [Energy\ (Time ("Gameover |

[et ., £ AL /[euidingType | [ActivityType | § T N
Egg}tgki}w [Interaction velocity | | ofider | [Enemylype | (position bool flat bool stroll [EnergyGauge | =
bool *buildings(] bool goose bool compsci bool relax
e, D il = boo|pazza (font srergmeraning | | foat dayssemar
v \ y S ; bool *water{] bool do ety float buildTimeSki float activityTimeSki \ 9 y
bool keyEsc 9 P B bool isDaysZero
Dol intrast — e float energyConsumed | |float energyRestored \l Y p

Above is the initial CES diagram created based on the product brief before the client. This was a very
simplified approach to the game with only basic functionality. There are buildings which have
activities which can only be completed if there is enough energy and time. The Player is able to move
around the map based on Input and can collide with Buildings. The game is over when time is up. An
Enemy was included in the initial diagram to provide more difficulty for the game.

(© creatsscreen @sengsscreen] (@manmend (@ cameover [@cessersonra
/ 7 N N
/ . \
S/ / - } bl - ~ar "
¥ £ 4 - © Soundianager h Gameverscreen
() Creditsscreentayout| () SettingsSereenLayout (©) Tutorial (©) MainMenuLayou ©] © Leademonrdscreen
Music overworidiusic © svererselect HustleGame game T
HustleGame game HustieGame game: Window tutorialwindaw HustieGame game Music menuMusic Int hoursstudied S el
screen previousscreen window optiontMenu Table avatarselectTable Image tideimage Sound foctstepl able Init o al A e
Window creditMenu Label optionTable HustieGame game Table buttonTable sound footstepz Table avatarTable Int hoursslept el o e P AT
Label creditTable TextButton exitButton Table tutorialTable TextButton starSuton boolean factstepEaal Label avatarTide Window gameOverMndaw T i
Label creditsTite Label settingsTitle Label tutorialTitie TextButton settingsButton fiaat footstepTimer HustleGame game Table gameOverTable L
Table scroliTable Sider musicsider Table scrolTutoriaTable TextButtan credfsBUttan float sbvolume Table avatarBLitonTable Labe| tite JTEIIEyLEAT e W
scrallPane scrollwindow Sder sbesiider ScrolPane scrolWindow TextButton exisuton fioat musicvolume ImageEuttan avataroptian Table scaresTabl T
La Table siderTable Label test int buttonwidth Sound pauseSound ImageBuitton avataroption2 TextBLitton exitButton o
String game credits class SoundManager String geme tutoriaext Table avatrSelectTable Sound dislogueOpensound class GameSe TextBuiton leaderoardButton ;"‘:;I‘QM P
TextButton extButTon Screen previousScreen TextButton continueBuiton | | Window tutoriehindow Sound dialoguedptionSaund Soundhianager game soundlianager | | SO0IEEN ShowText
Sound buttonSound Stage game blueBackgroun = -

The final CES diagram was too large so it was broken down into the stages of the game. Above is the
diagram of the Menu stage, Option stage, Credits stage, Game Over stage and Leaderboard stage.

No screens were included in the initial CES diagram so they had to be added. These are all the non-
game screens that allow the player to start the game, change music and sfx volume, see credits and
see their final score as well as the leaderboard and their achievements. All use a layout and rely on

the SoundManager. MainMenu uses AvatarSelect as there is a pop-up screen for the Player to select
an Avatar and this selection must be stored.

© Movement

boolean frozen © Animation

int direction String avatar

boolean moving Animation walkingAnimation
float speed Animation idleAnimation
Rectangle sprite float stateTime

Rectangle eventHitbox boolean moving

float centreX float direction

float centreY
(EObject ‘EPlayer

@ Collision e {
©cCl tinteractabl
GameObject[] collidables fl ‘"t d_U:ES nteractable
float oldX oat distance .
float oldY GameObject closestObject
i GameObject abject
Rectangle sprite J .
Rectangle eventHitbox GameObject[] collidables
float centreX MapProperties properties
Rectangle eventHitbox
float centreY flogt contrex
int scale oat centre

Rectangle bounds fioakcentrel]

@ SoundManager
Music overworldMusic
Music menuMusic
Sound footstepl
Sound footstep2
boolean footstepBool
float footstepTimer
float sfxVolume
float musicVolume
Sound pauseSound
Sound dialegueOpenSound
Sound dialogueOptionSound
Sound buttonSound

© InputAdapter
int keycode
Window escapeMenu
SoundManager game.soundManager
DialogueBox dialogueBox
EventManager eventManager
Player player
boolean sleeping

Above is the diagram about Player-Object interaction. After the interview, the client specified no
enemies were necessary at this stage so they were removed. The Player is able to move and each
Avatar has an Animation. The Player uses SoundManager when it steps. InputAdapter allows the
Player to react to arrow key presses (for moving the player) and other key presses for interactions.
Both the Object and Player are able to Collide with each other making the game more natural.

© Renderer
Window escapeMenu
boolean sleeping
Label timeLabel
float daySeconds
DialogueBox dialogueBox
Player player
SoundManager game.soundManager
boolean game.soundManager.footstepBool
OrthogonalTiledMapRenderer mapRenderer
int[] game.backgroundLayers B
SpriteBatch game.batch
float player.sprite.x
float player.sprite.y
float player.sprite.width
float player.sprite.height
int[] game.foregroundLayers
Label interactionLabel

© DateTime
© ObjectGenerator \ © EscapeMenu HustleGame game

float x Stage interfaceStage float daySeconds
float y | Window escapeMenu Table timeTable
float width HustleGame game Label timeLabel
float height Table escapeTable Label dayLabel
MapProperties properties TextButton resumeButton int day
float centrexX TextButton settingsButton Window escapeMenu
float centreY TextButton exitButton boolean sleeping
MapProperties objectProperties | SoundManager game.soundManager void GameOver
float scale Screen thisScreen int hour

String minutes
©DialogueBox (EPlayer ®Object EGameScreen EGamell

© Map
HustleGame game
float unitScale =
float game.mapScale © GameScreenlLayout
int game.mapSquareSize © Energyéar HustleGame game
OrthogonalTiledMapRenderer mapRenderer int avatarChoice
TiledMap game.map GameScreen game.gameScreen
TiledMapTileLayer layerQ ShapeRenderer game.shapeRenderer
Player player Image blackScreen
int layer Table uiTable
int[] game.objectLayers Player player
MapObjects objects
MapProperties properties
Rectangle player.sprite

Group energyGroup
Image energyBar

Image energyBarOutline
int energy

Above is the sub-diagram for rendering the GameScreen. The Renderer is used by all entities as it is
responsible for making assets appear on the screen. The GameScreen uses the Map to make the

background for the game. ObjectGenerator is used by Object to ensure all relevant objects appear
on the map. The EscapeMenu is used by GameScreen as a pop-up that appears when the Player
presses the Esc key. This will allow them to pause the game, see settings and quit. EnergyBar and
DateTime are used by the GameUl to display the Player’s energy level and the current day and time
on the screen. GameScreenLayout, like with the other screens above, is used by GameScreen to

format the screen.

There is also an initial CES diagram to expand on events and event management which can be seen
on the website [https://samh366.github.io/architecture.html]. It depicts the internal connection
between GameUl, GameScreen, Event, and DialogueBox instances with the other classes such as
DateTime, EventManager, SoundManager, InputAdapter, and more that makes up the entire game
logic which is separate from the game renderer.

— ©Event

© AchievementSystem
AchievementSystem instance
Achievements firstTimeEatenAchievement
Achievements eatMultipleTimesAchievement
© ScoreSystem

Achievements firstTimeSleptAchievement
i Scar m instance

p<String, Float> activityCounts
Achievements recreationalMultipleTimesAchievement ~ Map<String, Float= activity TotalScares
Map<String, Map<integer, Integer>> activ
Achievements firstTimeStudiedAchievement
¥

distanceT:

ArrayList=Achievements> Achievementslist

©GameUl
© EnergyBer
Group energyGroup
Image energyBar
Image energyBarOutline
int enargy
€ DialogueBox
- © BuildingEvent
Stringl] args
. [y int energyCost
i K € DialogueBoxGenerator HashMap=String, Integer= activityEnergies
© SoundManager Skin skin GameScreen game
int WIDTH int game.energy
JERETr s int HEIGHT DisiogueBox game cilogueBox
e S int MAXCHARS Stringl] topics
Ll T Window dialogueWindow int amount
boolean foatstepBoal Table dialogueTable String choice
flost faotstapTunar Label textLabel Stringl] talkTopies
loat sroicoas SelectBox selectBox Image game energyBar
flost eV olurm Window selectWindow float game daySeconds
5“ ;"“5 © “5“ :u Table selectTable int game.day
sw:a ”f‘l‘“ °é Sound int chaicelndex Label game dayLabel
e e ana St s
Sound butt 15 'f‘d String[] events int hours
una buttenseds Label[] optionPointers int game.hoursRecreational
Label pointer int game.hoursStudied

boolean game.sleeping
float secondsSlept
int hoursSlept

©GameScreen

© EventManager
GameScreen game
HashMap<String, Integer= activityEnergies
HashMap<String. String= objectinteractions

© DateTime
HustleGame game *

float daySecands © InputAdapter

Table timeTable int keycode . . Stringl] bopics
Label timeLabel Window escapeMenu © NonBuildingEvent Slrn:[] t:lpﬂc';p\p
TR Diknjlaban diaGteas axne BT
Hh ¥ og! 9 DizlogueBox game dialogueBox String|) args
indow Image game blackScreen
boolean sleeping Player player e
void GameOver boolean sleeping DialogueBox game dialogueBox
‘;L‘rm”' e AchievementSystem achievementSystem
ng minutes ScareSystem scoreSystem

Above is the final version of CES diagram which expands on the events and event management. It
includes the new changes such as AchievementSystem and ScoreSystem classes which are tightly
connected to the EventManager class. The EventManager class is responsible for updating the
Player’s current achievement and overall rank/score they get at the end of the game by using the
instances of AchievementSystem and ScoreSystem in its own class.

https://samh366.github.io/architecture.html

Relating Architecture to Requirements

User Requirements

ID

IArchitecture

UR-MENU

IThere is a MainMenu class with “New Game”, “Settings”, “Credits” and “Exit” buttons that
navigate to different features. This is further shown in the screen state diagram above. [*]

UR-CUSTOMISE

IThere is an avatar pop-up menu after the game tutorial (within the MainMenu class) that will
allow you to select between 2 different avatars.

ACHIEVEMENTS

UR-WORLD IThe GameScreen renders the map, locations and GameObjects onto the screen.

UR-INTERACT |When the Player approaches a GameObject, interaction options appear as a DialogueBox.

UR-TIMED IThe Time and Day classes keep a track of the time and day respectively. When the time gets to
24 hours the day in the Day class is incremented. When it reaches 7 the game ends.

UR-INFO IThe Energy class stores the energy level of the Player and it is represented as a bar on the
GameScreen.

UR-SOUND IThe SoundManager class manages when sounds are made. It also controls the music volume
and sfx volume separately.

UR-SETTINGS [The SettingsScreen class allows the user to change the music volume and sfx volume.

UR-SLEEP \When the Player does an Activity where isSleepActivity() returns true, energy levels are
replenished back to full by calling replenishEnergy().

UR-SCORE \When the Player finishes the game, the GamveOverScreen would show the breakdown of their
score. After that it would redirect them to the LeaderboardScreen to view the leaderboard
which has other Players’ scores on it.

UR- \When the Player does streaks of certain activities such as eating or studying x amounts of time

or certain distance walked, they will get achievements based on them which they can view at

the end of the game.

Functional System Requirements

ID Architecture

FR-VIEW The game uses topdown graphics and 3rd person sprites with arrow keys that allows the user to
move North, East, South and West according to WASD and Arrow keys

FR-START requires the player to be able to select between avatars which is fulfilled by the Avatar pop-up

screen in the MenuScreen class.

FR-INTERACT1

Interaction initiates a pop-up screen inside the GameScreen which freezes the character
movement until exited through choices or by pressing E

FR-INTERACT2

When a player starts to interact with a building, there shall be a pop-up with text and choices

FR-MENU1 In the MenuScreen class, TextButton(s) such as, “startButton”, “settingsButton”, “creditsButton”
and “exitButton” allows for the creation of buttons that lead to their respective Screens once
clicked.

FR-MENU2 No class for saving the game. This was an intentional choice.

FR-MENU3 While in GameScreen, Window escapeMenu allows the player to escape to MenuScreen by
pressing Esc key followed by the exit button

FR-NAVIGATE State diagram of player moving [https://samh366.github.io/architecture.html]

FR-SLEEP1 EventManager checks time of day before allowing activity. If 16 hours have passed all activities
except sleeping are locked.

FR-SLEEP2 EventManager checks energy class to measure energy level. Disallows every other activity aside
from sleep if energy level drops to 0.

FR-ENERGY1 Energy class and event

FR-ENERGY2 EventManager checks energy class for energy value

https://samh366.github.io/architecture.html

FR-WEEK Day class, when on 7th day and time in Time class gets to 24 hours game will stop

FR-TIME Activity class has amount of time it uses up which increases time in time class
Dialogue allows

FR-GAME-PLAY1-4 |to make decisions at location. Location has isSleepLocation() etc. to determine which is which.

FR-MENU4 MenuScreen has buttons allowing the player to select between multiple options

FR-COUNTER each Location counts how many times visited, each Activity counts how many times completed

FR-HIGHSCORE ([The LeaderboardScreen has the ability to save the current user’s score by giving them an input
text to put their name on the leaderboard to compare their score with previous users’ scores.

FR-STREAKS The LeaderboardScreen also integrates an achievement list for the current user to view which of
the achievements they have acquired.

References

[1] R. Wirfs-Brock. (2006, Jul.). A Brief Tour of Responsibility-Driven Design [Online]. Available:
https://wirfs-brock.com/PDFs/A Brief-Tour-of-RDD.pdf

https://wirfs-brock.com/PDFs/A_Brief-Tour-of-RDD.pdf

